PXE30-xxWSxx Single Output DC/DC Converters

10 to 40 Vdc or 18 to 75 Vdc input, 1.5 to 15 Vdc Single Output, 30W

TDK-Lambda

Features

- 30 WATTS MAXIMUM OUTPUT POWER
- OUTPUT CURRENT UP TO 8A
- STANDARD 2" X 1.6" X 0.4" PACKAGE
- HIGH EFFICIENCY UP TO 88%
- 4:1 WIDE INPUT VOLTAGE RANGE
- SIX-SIDED CONTINUOUS SHIELD
- FIXED SWITCHING FREQUENCY
- CE MARK MEETS 2006/95/EC, 93/68/EEC AND 2004/108/EC
- UL60950-1, EN60950-1 AND IEC60950-1 LICENSED
- ISO9001 CERTIFIED MANUFACTURING FACILITIES
- COMPLIANT TO RoHS EU DIRECTIVE 2002/95/EC

Options

Negative logic Remote On/Off

APPLICATIONS

Wireless Network Telecom/Datacom Industry Control System Measurement Semiconductor Equipment

General Description

The PXE30-xxWSxx series offers 30 watts of output power from a $2 \times 1.6 \times 0.4$ inch package .lt has a 4:1 wide input voltage of 10-40VDC or 18-75VDC and features 1600VDC of isolation, short-circuit and over-voltage protection.

Table of Contents

Absolute Maximum Rating	P2	Heat Sink Consideration	P38
Output Specification	P2	Remote ON/OFF Control	P39
Input Specification	P3	Mechanical Data	P40
General Specification	P4	Recommended Pad Layout	P41
Characteristic Curves	P5	Output Voltage Adjustment	P42
Test Configurations	P33	Soldering and Reflow Consideration	P44
EMC Considerations	P34	Packaging Information	P44
Input Source Impedance	P36	Part Number Structure	P45
Output Over Current Protection	P36	Safety and Installation Instruction	P46
Output Over Voltage Protection	P37	MTBF and Reliability	P46
Short Circuit Protection	P37		
Thermal Consideration	P37		

Absolute	Absolute Maximum Rating						
Parameter	Model	Min	Max	Unit			
Input Voltage							
Continuous	24WSxx		40				
	48WSxx		75	Vdc			
Transient (100ms)	24WSxx		50				
,	48WSxx		100				
Input Voltage Variation	All		5	V/ms			
(complies with EST300 132 part 4.4)	All		3	V/1115			
Operating Ambient Temperature (with derating)	All	-40	85	°C			
Operating Case Temperature	All		100	℃			
Storage Temperature	All	-55	105	°C			

Parameter Model Min Typ Max Unit	Outpo	ut Specification	n			
\(\text{Vin} = \text{Vin(nom)}; \text{Full Load}; \text{TA=25°C}\) \(\text{xxWS1P8} \\ \text{xxWS2P5} \\ \text{xxWS3P3} \\ \text{xxWS2P5} \\ \text{xxWS3P3} \\ \text{3.267} \\ \text{3.3} \\ \text{3.3} \\ \text{3.333} \\ \text{3.333} \\ \text{xxWS05} \\ \text{xxWS12} \\ \text{11.88} \\ \text{12} \\ \text{12} \\ \text{12.12} \\ \text{xxWS15} \\ \text{14.85} \\ \text{15} \\ \text{15.15} \\ \text{Voltage Adjustability} \\ \text{All} \\ \text{-10} \\ \text{Voltage Adjustability} \\ \text{All} \\ \text{-10} \\ \text{4.95} \\ \text{5.50.50.5} \\ \text{xxWS15} \\ \text{11.88} \\ \text{12} \\ \text{12.12} \\ \text{xxWS15} \\ \text{10.10} \\ \text{11.88} \\ \text{12} \\ \text{12.12} \\ \text{xxWS15} \\ \text{10.10} \\ \text{11.88} \\ \text{12} \\ \text{12.12} \\ \text{xxWS15} \\ \text{10.10} \\ \text{15.15} \\ \text{15.15} \\ \text{15.15} \\ \text{15.15} \\ \text{16.15}	Parameter	Model	Min	Тур	Max	Unit
XXWS2P5	Output Voltage	xxWS1P5	1.485	1.5	1.515	
xxWS3P3 3.267 3.3 3.333 Vdc xxWS05 4.95 5 5.05 5.05 xxWS12 11.88 12 12.12 xxWS15 14.85 15 15.15 15.15	(Vin = Vin(nom); Full Load; TA=25°C)	xxWS1P8	1.782	1.8	1.818	
xxWS05		xxWS2P5	2.475	2.5	2.525	
xxWS12		xxWS3P3	3.267	3.3	3.333	Vdc
Voltage Adjustability		xxWS05	4.95	5	5.05	
Voltage Adjustability All -10 +10 % Output Regulation Line (Vin(min) to Vin(max) at Full Load) Load (Min. to 100% of Full Load) Load (Min. to 100% of Full Load)		xxWS12	11.88	12	12.12	
Output Regulation All -0.5 +0.5 % Line (Vin(min) to Vin(max) at Full Load) All -0.5 +0.5 % Load (Min. to 100% of Full Load) xxWS1P5 60 +0.5 % Output Ripple & Noise xxWS1P8 60 mVP-p 60 mVP-p Peak-to-Peak (20MHz bandwidth) xxWS1P8 60 mVP-p 60 mVP-p (Measured with a 0.1µF/50V MLCC) xxWS2P5 60 mVP-p 60 mVP-p xxWS3P3 60 mVP-p 60 60 mVP-p 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60		xxWS15	14.85	15	15.15	
Line (Vin(min) to Vin(max) at Full Load) All -0.5 +0.5 % Load (Min. to 100% of Full Load) xxWS1P5 60 +0.5 +0.5 % Output Ripple & Noise xxWS1P5 60 60 mVP-p xxWS1P8 60 mVP-p mVP-p mVP-p xxWS3P3 60 mVP-p mVP-p xxWS3P3 60 mVP-p mVP-p xxWS12 100 mVP-p xxWS112 100 mVP-p xxWS112 100 mVP-p xxWS112 100 xxWS112 100 xxWS112 100 xxWS112 100 xxWS112 100 xxWS12 xxWS12 0 5 %°C 0 0 5 %°C 0 xxWS12 0 5 %°C 0 mV yxWS12 0 3 0 %°C 0 mV yxWS12 0 3 0 %°C 0 mV yxWS12 0 0 0 0 0 mV yxWS12 0 0 0 <	Voltage Adjustability	All	-10		+10	%
Load (Min. to 100% of Full Load) -0.5	Output Regulation					
Output Ripple & Noise xxWS1P5 60 Peak-to-Peak (20MHz bandwidth) xxWS1P8 60 (Measured with a 0.1μF/50V MLCC) xxWS2P5 60 xxWS3P3 60 mVp-p xxWS05 75 mVp-p xxWS12 100 mVp-p xxWS15 100 mVp-p Temperature Coefficient All -0.02 +0.02 %°C Output Voltage Overshoot (Vin(min) to Vin(max); Full Load; T _A =25°C) All 0 5 % Vb Dynamic Load Response (Vin = Vin(nom); T _A =25°C) All 250 mV Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation Setting Time (V _{OUT} -10% peak deviation) All 250 mV Output Current xxWS1P5 xxWS1P8 0 8000 8000 xxWS2P5 8000 8000 8000 0 mA xxWS3P3 xxWS05 0 0 6000 6000 8000 mA	Line (Vin(min) to Vin(max) at Full Load)	All	-0.5		+0.5	%
Peak-to-Peak (20MHz bandwidth)	Load (Min. to 100% of Full Load)		-0.5		+0.5	
(Measured with a 0.1μF/50V MLCC) xxWS2P5	Output Ripple & Noise	xxWS1P5		60		
XXWS3P3	Peak-to-Peak (20MHz bandwidth)	xxWS1P8		60		
xxWS05 xxWS12 100 xxWS15	(Measured with a 0.1µF/50V MLCC)	xxWS2P5		60		
xxWS12		xxWS3P3		60		mVp-p
XXWS15		xxWS05		75		
Temperature Coefficient All Output Voltage Overshoot (Vin(min) to Vin(max); Full Load; T _A =25°C) Dynamic Load Response (Vin = Vin(nom); T _A =25°C) Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation Setting Time (V _{OUT} -10% peak deviation) All 250 All 250 mV μS Output Current xxWS1P5 0 xxWS1P5 0 xxWS1P8 0 xxWS2P5 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 150 40 100 100 100 100 100 100		xxWS12		100		
Output Voltage Overshoot (Vin(min) to Vin(max); Full Load; T _A =25°C) All 0 5 % Vo Dynamic Load Response (Vin = Vin(nom); T _A =25°C) Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation Setting Time (V _{OUT} -10% peak deviation) All 250 mV Just 250 MV μS Output Current xxWS1P5 0 8000 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 2500		xxWS15		100		
(Vin(min) to Vin(max); Full Load; T _A =25°C) Dynamic Load Response (Vin = Vin(nom); T _A =25°C) Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation All 250 mV Setting Time (V _{OUT} -10% peak deviation) All 250 8000 Output Current xxWS1P5 0 8000 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 2500	Temperature Coefficient	All	-0.02		+0.02	%/°C
(Vin(min) to Vin(max); Full Load; T _A =25°C) Dynamic Load Response (Vin = Vin(nom); T _A =25°C) Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation All 250 mV Setting Time (V _{OUT} -10% peak deviation) XXWS1P5 0 8000 Output Current XXWS1P8 0 8000 XXWS2P5 0 8000 XXWS3P3 0 6000 mA XXWS05 0 6000 2500	Output Voltage Overshoot	ΔII		0	E	0/ \6
(Vin = Vin(nom); T _A =25°C) Load step change from 75% to 100% or 100 to 75% of Full Load All 250 mV Peak Deviation All 250 μS Setting Time (V _{OUT} -10% peak deviation) xxWS1P5 0 8000 0 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS1P3 0 6000 mA xxWS1P3 0 6000 mA xxWS1P3 0 6000 2500	(Vin(min) to Vin(max) ; Full Load ; $T_A=25$ °C)	All		U	5	% W
Load step change from 75% to 100% or 100 to 75% of Full Load Peak Deviation Setting Time (V _{OUT} -10% peak deviation) All 250 mV Vulys ΔII 250 8000 XXWS1P5 0 8000 XXWS1P8 0 8000 XXWS2P5 0 8000 XXWS3P3 0 6000 mA XXWS05 0 6000 2500	Dynamic Load Response					
75% to 100% or 100 to 75% of Full Load Peak Deviation Setting Time (V _{OUT} -10% peak deviation) All xxWS1P5 xxWS1P8 0 xxWS2P5 0 xxWS2P5 0 xxWS3P3 0 6000 mA xxWS05 0 xxWS12 0 250 mV μS						
Peak Deviation Setting Time (Vour-10% peak deviation) All All 250 mV μS Output Current xxWS1P5 0 8000 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA mMV μS						
Setting Time (V _{OUT} -10% peak deviation) All 250 μS Output Current xxWS1P5 0 8000 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 2500		All		250		mV
Output Current xxWS1P5 0 8000 xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 2500		All		250		μS
xxWS1P8 0 8000 xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 2500		xxWS1P5	0		8000	
xxWS2P5 0 8000 xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 2500	1		_			
xxWS3P3 0 6000 mA xxWS05 0 6000 xxWS12 0 2500			_			
xxWS05 0 6000 xxWS12 0 2500			_			mA
xxWS12 0 2500			_			
			_			
		xxWS15	0		2000	

Output Specification(Continued)					
Parameter	Model	Min	Тур	Max	Unit
Output Over Voltage Protection	xxWS1P5		3.9		
(Zener diode clamp)	xxWS1P8		3.9		
	xxWS2P5		3.9		
	xxWS3P3		3.9		Vdc
	xxWS05		6.2		
	xxWS12		15		
	xxWS15		18		
Output Over Current Protection	All			150	% FL.
Output Short Circuit Protection	All	Hiccup, automatics recovery			ry

Input (Specification				
Parameter	Model	Min	Тур	Max	Unit
Operating Input Voltage	24WSxx	10	24	40	Vdc
	48WSxx	18	48	75	Vac
Input Current	24WS1P5			658	
(Maximum value at Vin = Vin(nom); Full Load)	24WS1P8			759	
	24WS2P5			1029	
	24WS3P3			994	
	24WS05			1506	
	24WS12			1506	
	24WS15			1488	∞ Λ
	48WS1P5			329	mA
	48WS1P8			380	
	48WS2P5			508	
	48WS3P3			497	
	48WS05			744	
	48WS12			753	
	48WS15			744	
Input Standby Current	24WS1P5		35		
(Typical value at Vin = Vin(nom); No Load)	24WS1P8		35		
	24WS2P5		40		
	24WS3P3		50		
	24WS05		65		
	24WS12		65		
	24WS15		70		∞ Λ
	48WS1P5		20		mA
	48WS1P8		20		
	48WS2P5		25		
	48SW3P3		30		
	48WS05		30		
	48WS12		35		
	48WS15		45		
Under Voltage Lockout Turn-on Threshold	24WSxx			10	\
	48WSxx			18	Vdc

Input Specif	Input Specification(Continued)						
Parameter	Model	Min	Тур	Max	Unit		
Under Voltage Lockout Tum-off Threshold	24WSxx		8		Vdc		
	48WSxx		16		vuc		
Input Reflected Ripple Current	All		20		m An n		
(5 to 20MHz, 12µH Source Impedance)	All		20		mAp-p		
Start Up Time							
(Vin = Vin(nom) and Constant Resistive Load)					mS		
Power Up	All		10		1110		
Remote ON/OFF			10				
Remote ON/OFF Control							
(The ON/OFF pin voltage is referenced to -V _{IN})							
Positive Logic DC-DC ON(Open)	All	3		12	Vdc		
DC-DC OFF(Short)	All	0		1.2	vuc		
Negative Logic DC-DC ON(Short)		0		1.2			
DC-DC OFF(Open)		3		12			
Remote Off Input Current	All		3		mA		
Input Current of Remote Control Pin	All	-0.5		0.5	mA		

Ge	eneral Specification	1			
Parameter	Model	Min	Тур	Max	Unit
Efficiency	24WS1P5		80		
($Vin = Vin(nom)$; Full Load; TA=25°C)	24WS1P8		83		
	24WS2P5		85		
	24WS3P3		87		
	24WS05		87		
	24WS12		87		
	24WS15		88		%
	48WS1P5		80		%
	48WS1P8		83		
	48WS2P5		86		
	48WS3P3		87		
	48WS05		88		
	48WS12		87		
	48WS15		88		
Isolation Voltage					
Input to Output	All	1600			Vdc
Input to Case, Output to Case		1600			
Isolation Resistance	All	1			GΩ
Isolation Capacitance	All			1000	pF
Switching Frequency	All		300		KHz
Weight	All		48		g
MTBF					
Bellcore TR-NWT-000332, TC=40°C	All		1.315×10 ⁶		h a
MIL-HDBK-217F			3.456×10 ⁵		hours
Over Temperature Protection	All		115		°C

Characteristic Curves	(Continued)
All test conditions are at 25°C.The figures are for PXE30-48WS1P5	
-	
Filing and Market Control of Cont	Device Discinction Versus Outside Comment
Efficiency Versus Output Current	Power Dissipation Versus Output Current
Efficiency Versus Input Voltage. Full Load	Derating Output Current Versus Ambient Temperature and
	Airflow Vin=Vin(nom)
Derating Output Current Versus Ambient Temperature with Heat-Sink	
and Airflow, Vin = Vin(nom)	

Characteristic Curves (Continued)				
All test conditions are at 25°C.The figures are for PXE30-48W				
-				
Typical Output Ripple and Noise.	Transient Response to Dynamic Load Change from			
Vin=Vin(nom), Full Load	100% to 75% to 100% of Full Load; Vin=Vin(nom)			
Typical Input Start-Up and Output Rise Characteristic	Using ON/OFF Voltage Start-Up and Vo Rise Characteristic			
Vin=Vin(nom), Full Load	Vin=Vin(nom), Full Load			
Conduction Emission of EN55022 Class A	Conduction Emission of EN55022 Class B			
Vin=Vin(nom), Full Load	Vin=Vin(nom), Full Load			

Test Configurations

Input reflected-ripple current measurement test:

Component	Value	Voltage	Reference
L	12µH		
С	220µF	100V	Aluminum Electrolytic Capacitor

Peak-to-peak output ripple & noise measurement test:

Output voltage and efficiency measurement test:

Note: All measurements are taken at the module terminals.

$$\textit{Efficiency} = \left(\frac{V_o \times I_o}{V_{in} \times I_{in}}\right) \times 100\%$$

Suggested Schematic for EN55022 Conducted Emission Class A Limits

Recommended Layout with Input Filter

To meet conducted emissions EN55022 CLASS A needed the following components:

PXE30-24WSxx

Component	Value	Voltage	Reference
C1	6.8uF	50V	1812 MLCC
C3,C4	1000pF	2KV	1808 MLCC

PXE30-48WSxx

Component	Value	Voltage	Reference
C1,C2	2.2uF	100V	1812 MLCC
C3,C4	1000pF	2KV	1808 MLCC

+INPUT -INPUT -INPUT

Suggested Schematic for EN55022 Conducted Emission Class B Limits

Recommended Layout with Input Filter

To meet conducted emissions EN55022 CLASS B needed the following components:

PXE30-24WSxx

Component	Value	Voltage	Reference
C1,C3	6.8uF	50V	1812 MLCC
C5,C6	1000pF	2KV	1808 MLCC
L1	450uH		Common Choke

PXE30-48WSxx

Component	Value	Voltage	Reference
C1,C2	2.2uF	100V	1812 MLCC
C3,C4	2.2uF	100V	1812 MLCC
C5,C6	1000pF	2KV	1808 MLCC
L1	450uH		Common Choke

Input Source Impedance

The converter should be connected to a low impedance input source. Highly inductive source impedance can affect the stability of the converter. Input external L-C filter is recommended to minimize input reflected ripple current. The inductor has a simulated source impedance of 12µH and the capacitor is Nippon chemi-con KY series 220µF/100V. The capacitor must be located as close as possible to the input terminals of the converter for lowest impedance.

Output Over Current Protection

When excessive output currents occur in the system, circuit protection is required on all converters. Normally, overload current is maintained at approximately 150 percent of rated current for PXF40-xxSxx series.

Hiccup-mode is a method of operation in a converter whose purpose is to protect the power supply from being damaged during an over-current fault condition. It also enables the converter to restart when the fault is removed. There are other ways of protecting the converter when it is over-loaded, such as the maximum current limiting or current foldback methods.

One of the problems resulting from over current is that excessive heat may be generated in power devices; especially MOSFET and Schottky diodes and the temperature of these devices may exceed their specified limits. A protection mechanism has to be used to prevent these power devices from being damaged.

The operation of hiccup is as follows. When the current sense circuit sees an over-current event, the controller shuts off the converter for a given time and then tries to start up the converter again. If the over-load condition has been removed, the converter will start up and operate normally; otherwise, the controller will see another over-current event and will shut off the converter again, repeating the previous cycle. Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower.

Output Over Voltage Protection

The output over-voltage protection consists of an output Zener diode that monitors the voltage on the output terminals. If the voltage on the output terminals exceeds the over-voltage protection threshold, then the Zener diode clamps the output voltage.

Short Circuitry Protection

Continuous, hiccup and auto-recovery mode.

During a short circuit condition the converter will shut down. The average current during this condition will be very low.

Thermal Consideration

The converter operates in a variety of thermal environments. However, sufficient cooling should be provided to help ensure reliable operation of the unit. Heat is removed by conduction, convection, and radiation to the surrounding environment. Proper cooling can be verified by measuring the point as shown in the figure below. The temperature at this location should not exceed 100°C. When operating, adequate cooling must be provided to maintain the test point temperature at or below 100°C. Although the maximum point temperature of the converter is 100°C, limiting this temperature to a lower value will yield higher reliability.

Remote ON/OFF Control

The Remote ON/OFF Pin is used to turn on and off the DC-DC converter. The user must use a switch to control the logic voltage (high or low level) of the ON/OFF pin, referenced to -Vi. The switch can be open collector transistor, FET or Opto-Coupler that is capable of sinking up to 0.5 mA at low-level logic Voltage. High-level logic of the ON/OFF signal (maximum voltage): the allowable leakage current of the switch at 12V is 0.5mA.

Remote ON/OFF Implementation Circuits

Isolated-Clontrol Remote ON/OFF

Level Control Using TTL Output

Level Control Using Line Voltage

There are two remote control options available, Positive Logic and Negative Logic.

a. Positive logic:

using Low-level logic

PXE30-xxWSxx module is turned off PXE30-xxWSxx module is turned on using High-level logic

On/Off Pin

b. Negative logic:

SW ○ Vi (-)

using Low-level logic

PXE30-xxWSxx module is turned on PXE30-xxWSxx module is turned off using High-level logic

Output Voltage Adjustment

Output voltage set point adjustment allows the user to increase or decrease the output voltage set point of a module. This is accomplished by connecting an external resistor between the TRIM pin and either the Vo(+) or Vo(-) pins. With an external resistor between the TRIM and Vo(-) pin, the output voltage set point increases. With an external resistor between the TRIM and Vo(+) pin, the output voltage set point decreases.

TRIM TABLE

PXE30-xxWS1P5

Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	1.515	1.53	1.545	1.56	1.575	1.59	1.605	1.62	1.635	1.65
R _U (K Ohms)=	4.578	2.605	1.227	0.808	0.557	0.389	0.27	0.18	0.11	0.054
Trim down (%)	1	2	3	4	5	6	7	8	9	10
Trim down (%) Vout (Volts)=	1 1.485	2 1.47	3 1.455	4 1.44	5 1.425	6 1.41	7 1.395	8 1.38	9 1.365	10 1.35

PXE30-xxWS1P8

Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	1.818	1.836	1.854	1.872	1.89	1.908	1.926	1.944	1.962	1.98
R _∪ (K Ohms)=	11.639	5.205	3.06	1.988	1.344	0.915	0.609	0.379	0.2	0.057
Trim down (%)	1	2	3	4	5	6	7	8	9	10
Trim down (%) Vout (Volts)=	1 1.782	2 1.764	3 1.746	4 1.728	5 1.71	6 1.692	7 1.674	8 1.656	9 1.638	10 1.62

PXE30-xxWS2P5

Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	2.525	2.55	2.575	2.6	2.625	2.65	2.675	2.7	2.725	2.75
R _U (K Ohms)=	37.076	16.675	9.874	6.474	4.434	3.074	2.102	1.374	0.807	0.354
Trim down (%)	1	2	3	4	5	6	7	8	9	10
Trim down (%) Vout (Volts)=	1 2.475	2 2.45	3 2.425	4 2.4	5 2.375	6 2.35	7 2.325		9 2.275	10 2.25

PXE30-xxWS3P3

Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	3.333	3.366	3.399	3.432	3.465	3.498	3.531	3.564	3.597	3.630
R _∪ (K Ohms)=	57.930	26.165	15.577	10.283	7.106	4.988	3.476	2.341	1.459	0.753
Trim down (%)	1	2	3	4	5	6	7	8	9	10
Trim down (%) Vout (Volts)=	1 3.267	2 3.234	3 3.201	4 3.168	5 3.135	6 3.102	7 3.069	8 3.036	9 3.003	10 2.970

			Output V	oltage A	.djustme	nt(Conti	nued)			
DVE20 1544/00) [
PXE30-xxWS0 Trim up (%)	ری 1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	5.050	5.100	5.150	5.200	5.250	5.300	5.350	5.400	5.450	5.500
R _U (K Ohms)=	36.570	16.580	9.917	6.585	4.586	3.253	2.302	1.588	1.032	0.588
Trim down (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	4.950	4.900	4.850	4.800	4.750	4.700	4.650	4.600	4.550	4.500
R _D (K Ohms)=	45.533	20.612	12.306	8.152	5.660	3.999	2.812	1.922	1.230	0.676
PXE30-xxWS ²	12									
Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	12.120	12.240	12.360	12.480	12.600	12.720	12.840	12.960	13.080	13.200
R _U (K Ohms)=	367.910	165.950	98.636	64.977	44.782	31.318	21.701	14.488	8.879	4.391
Trim down (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	11.880	11.760	11.640	11.520	11.400	11.280	11.160	11.040	10.920	10.800
R _D (K Ohms)=	460.990	207.950	123.600	81.423	56.118	39.249	27.199	18.162	11.132	5.509
PXE30-xxWS ²	15									
Trim up (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	15.150	15.300	15.450	15.600	15.750	15.900	16.050	16.200	16.350	16.500
R _U (K Ohms)=	404.180	180.590	106.060	68.796	46.437	31.531	20.883	12.898	6.687	1.718
Trim down (%)	1	2	3	4	5	6	7	8	9	10
V _{OUT} (Volts)=	14.850	14.700	14.550	14.400	14.250	14.100	13.950	13.800	13.650	13.500
R_D (K Ohms)=	499.820	223.410	131.270	85.204	57.563	39.136	25.974	16.102	8.424	2.282

Packaging Information 12 PCS per TUBE

Model	Input	Output	Output	Output Current		Input Current		
Number	Range	Voltage	Min. load	Full Load	No load ⁽¹⁾	Full Load (2)	(%)	
PXE30-24WS1P5	10-40 VDC	1.5 VDC	0mA	8000mA	35mA	658mA	80	
PXE30-24WS1P8	10-40 VDC	1.8 VDC	0mA	8000mA	35mA	759mA	83	
PXE30-24WS2P5	10-40 VDC	2.5 VDC	0mA	8000mA	40mA	1029mA	85	
PXE30-24WS3P3	10-40 VDC	3.3 VDC	0mA	6000mA	50mA	994mA	87	
PXE30-24WS05	10-40 VDC	5 VDC	0mA	6000mA	65mA	1506mA	87	
PXE30-24WS12	10-40 VDC	12 VDC	0mA	2500mA	65mA	1506mA	87	
PXE30-24WS15	10-40 VDC	15 VDC	0mA	2000mA	70mA	1488mA	88	
PXE30-48WS1P5	18 – 75 VDC	1.5 VDC	0mA	8000mA	20mA	329mA	80	
PXE30-48WS1P8	18 – 75 VDC	1.8 VDC	0mA	8000mA	20mA	380mA	83	
PXE30-48WS2P5	18 – 75 VDC	2.5 VDC	0mA	8000mA	25mA	508mA	86	
PXE30-48WS3P3	18 – 75 VDC	3.3 VDC	0mA	6000mA	30mA	497mA	87	
PXE30-48WS05	18 – 75 VDC	5 VDC	0mA	6000mA	30mA	744mA	88	
PXE30-48WS12	18 – 75 VDC	12 VDC	0mA	2500mA	35mA	753mA	87	
PXE30-48WS15	18 – 75 VDC	15 VDC	0mA	2000mA	45mA	744mA	88	

Note 1. Typical value at nominal input voltage and no load.

Note 2. Maximum value at nominal input voltage and full load.

Note 3. Typical value at nominal input voltage and full load.

Safety and Installation Instruction

Fusing Consideration

Caution: This converter is not internally fused. An input line fuse must always be used.

This encapsulated converter can be used in a wide variety of applications, ranging from simple stand-alone operation to an integrated part of sophisticated power architecture. For maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a slow-blow fuse with maximum rating of 6A. Based on the information provided in this data sheet on inrush energy and maximum DC input current; the same type of fuse with lower rating can be used. Refer to the fuse manufacturer's data for further information.

MTBF and Reliability

The MTBF of PXE30-xxWSxx DC/DC converter has been calculated using

Bellcore TR-NWT-000332 Case I: 50% stress, Operating Temperature at 40°C (Ground fixed and controlled environment). The resulting figure for MTBF is 1.315×10⁶ hours.

MIL-HDBK-217F NOTICE2 FULL LOAD, Operating Temperature at 25°C $^{\circ}$ C. The resulting figure for MTBF is 3.456×10^5 hours.